Splenic marginal zone dendritic cells mediate the cholera toxin adjuvant effect: dependence on the ADP-ribosyltransferase activity of the holotoxin.
نویسندگان
چکیده
The in vivo mechanisms of action of most vaccine adjuvants are poorly understood. In this study, we present data in mice that reveal a series of critical interactions between the cholera toxin (CT) adjuvant and the dendritic cells (DC) of the splenic marginal zone (MZ) that lead to effective priming of an immune response. For the first time, we have followed adjuvant targeting of MZ DC in vivo. We used CT-conjugated OVA and found that the Ag selectively accumulated in MZ DC following i.v. injections. The uptake of Ag into DC was GM1 ganglioside receptor dependent and mediated by the B subunit of CT (CTB). The targeted MZ DC were quite unique in their phenotype: CD11c(+), CD8alpha(-), CD11b(-), B220(-), and expressing intermediate or low levels of MHC class II and DEC205. Whereas CTB only delivered the Ag to MZ DC, the ADP-ribosyltransferase activity of CT was required for the maturation and migration of DC to the T cell zone, where these cells distinctly up-regulated CD86, but not CD80. This interaction appeared to instruct Ag-specific CD4(+) T cells to move into the B cell follicle and strongly support germinal center formations. These events may explain why CT-conjugated Ag is substantially more immunogenic than Ag admixed with soluble CT and why CTB-conjugated Ag can tolerize immune responses when given orally or at other mucosal sites.
منابع مشابه
Activity of the Holotoxin Dependence on the ADP-Ribosyltransferase Mediate the Cholera Toxin Adjuvant Effect: Splenic Marginal Zone Dendritic Cells
متن کامل
Adjuvanticity of the cholera toxin A1-based gene fusion protein, CTA1-DD, is critically dependent on the ADP-ribosyltransferase and Ig-binding activity.
The ADP-ribosylating enterotoxins, cholera toxin (CT) and Escherichia coli heat-labile toxin, are among the most powerful immunogens and adjuvants yet described. An innate problem, however, is their strong toxic effects, largely due to their promiscuous binding to all nucleated cells via their B subunits. Notwithstanding this, their exceptional immunomodulating ability is attracting increasing ...
متن کاملThe ADP-ribosylating mosquitocidal toxin from Bacillus sphaericus: proteolytic activation, enzyme activity, and cytotoxic effects.
The mosquitocidal toxin (MTX) from Bacillus sphaericus SSII-1 is a approximately 97-kDa protein sharing sequence homology within the N terminus with the catalytic domains of various bacterial ADP-ribosyltransferases. Here we studied the proteolytic activation of the ADP-ribosyltransferase activity of MTX. Chymotrypsin treatment of the 97-kDa MTX holotoxin (MTX(30-870)) results in a 70-kDa putat...
متن کاملOrientation of cholera toxin bound to target cells.
Cholera toxin (CT) consists of a pentameric B subunit that binds to specific cell surface receptors identified as ganglioside GM1 and an A subunit that activates adenylylcyclase. The A subunit consists of A1 and A2 peptides linked by a disulfide bond; A2 acts to connect A to B, whereas A1 is an ADP-ribosyltransferase that modifies the alpha subunit of the stimulatory G protein (Gs). How the tox...
متن کاملSite-specific alterations in the B oligomer that affect receptor- binding activities and mitogenicity of pertussis toxin
Pertussis toxin plays a major role in the pathogenesis of whooping cough and is considered an important constituent of vaccines against this disease. It is composed of five different subunits associated in a molar ratio 1S1:1S2:1S3:2S4:1S5. The S1 subunit is responsible for the ADP-ribosyltransferase activity of the toxin. The B moiety, composed of S2 through S5, recognizes and binds to the tar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 175 8 شماره
صفحات -
تاریخ انتشار 2005